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ON VIBRATIONAL STABILIZATION OF THE LAGRANGE GYROSCOPE* 

G.M. ROZENBLAT 

The problem of stabilization of the Lagrange gyroscope is studied using 
the periodic rotations of its rotor. The rotations are such, that the 
averaged angle of rotation of the rotor about its natural axis is zero. 
Sufficient conditions for the gyroscope to be stable are obtained and the 
stabilizing controls are shown. 

1. Formulation of the problem. We consider the Lagrange case of a heavy rigid body 
with a fixed point (Fig.1). Let o&)5 be a system of fixed axes with the origin at the 
fixed point of the gyroscope, with the E axis directed opposite to the force of gravity. 
The linearized equations of motion of the Lagrange gyroscope can be written in the small 
neighbourhood of the vertical state of equilibrium in the following form /l/: 

Aa” + Ccp’/3’ = mgla, Ap” - Ccp’a’ = mg@ (1.1) 
Cc+” = M (t) (1.2) 

where a,p denote the length and width of the gyroscope top on a unit sphere, with centre at 
the point of support 0, for which E< is the equatorial plane, and the point of intersection 
of the sphere with the TJ axis is the north pole, cp is the angle of rotation of the rotor 
about the 2 axis of symmetry, A is the moment of inertia of the rotor about an axis perpen- 
dicular to the z axis and passing through the point 0, C is the moment of inertia of the 

rotor about the z axis, I= OG is the distance between the 

ct centre of gravity of the rotor and the point of support, m is 
the mass of the rotor, g is accelerationdueto gravity, and iv(t) 
is the controlling moment of the motor transmitted to the rotor 
and directed along the z axis. 

We consider the problem of choosing a T-periodic (T is a 
given period of time) control moment M(t)such that equation (1.2) 
has a bounded solution and system (1.1) is Lyapunov stable with 
respect to the variables IX, a’, p.r. In other words, we must 
choose the moment M(t) in such a manner, that the rotor will 
remain, on average, stationary with respect to the z axis of 
symmetry and its vertical position of equilibrium will be stable. 

2. Formulation of the results. Let M(t) be the fol- 
lowing T-periodic function: 

Fig.1 -A(hl+ht)6(+ O,<r<b 

M(t)={ A(hl+h2)6(~-t& t~<~<t,-i-tz=T 
(2.1) 

T = t -ltkT, k = It/T1 

where 6(7) is the delta function and h,,h,, r, 2 t t are positive parameters satisfying the con- 
ditions 

k,& = %I t, + t, = T (2.21 

Theorem 1. lo. Let h,, h,, t,, tz satisfy the equations (2.2) and the condiflion 

as2 = h,V4 - r >O (r=mgllA) (2.3) 

Then the control iM(t) of (2.1) will yield a solution of the problem formulated in Sect. 
1, provided that the following inequality holds: 

Q=lh co.9 o*t* f h,h.: + 4r 
4wlw,psind <I (2.4) 

and 

h = cos o,t,, p = sin o,t,, oll = h12/4 - r > 0 (2.5) 
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h = ch o,t,, p = sh o,t,, or2 = r - h,*/4 > 0 (2.6) 

2O. Let k,, k,, t,, tz satisy (2.2) and the conditions 

r - h,V4 > 0, r - h,=/4 > 0 (2.7) 

Then the control M(t) (2.1) cannot produce the required stabilization. Moreove_r, if 

the moment M(t) does not ensure that the angular velocity of the rotor o> o0 = 2l/rAIC, 
then system (1.1) cannot be stable. 

Theorem 2. Let h,, h,, tl,ta satisfy the conditions (2.2) -_(2.5) or (2.2)-_(2.4), (2.6). 

Then z,>O exists such, that the control M* (t) defined by the relations 

Y ie Ids a solution to the problem of Sect-l. 

Notes. 
0 
1 . Theorem 1 yields a periodically stabilizing control with two switch-over 

intervals, on both of which system (1.1) is stationary. Moreover, in the case (2.3), (2.5) 
system (1.1) is stable in each of the stationarity intervals, while in the case (2.3), (2.6) 
it is unstable in one of the intervals (the first interval of (2.1)). However, the combina- 
tion of the stable and unstable modes makes system (l.l), on the whole, stable. In case 
(2.7) system (1.1) is unstable in both control I switch-over intervals, and Theorem 1 
asserts that in this case stabilization is impossible. 

2O. It can be shown that the set of parameters (b,S,t,,t,) satisfying the conditions 
(2.2)-(2.5) or (2.2)-_(2.4), (2.6) is non-empty. 

Indeed, in the case (2.2)-(2.5) we can write ti-sl%, t,= at,/b where b,h, are any 
positive constants satisfying the inequality (2.3) and the equality in (2.5) and such, that 
the ratio o, h,/(o,h,) is not an integer. Then (2.4) becomes the following obvious inequality: 

I ~0s IGw~(Wdl I < i 

/ 

0, O<T<h 
-Mm h<z<h+~o 

M*(t)= o 

(2.8) 

MI, 
h + 70 Q z < t1+ To + ts 
tl+ro-i-ts<T<T* 

T = t - kT*, k = [t/T*] 

MO = A (h, + h,)lz,,, T* = T + 22, (2.9) 

In the case (2.2)-_(2.4), (2.6) we will assume e.g. that 4 =&r/f-4)l/?l, a=4VE t,= 
3n/(4o,),t, = h&/h,. Then inequality (2.3) and the inequality in (2.6) can be obtained by direct 
substitution and (2.4) is transformed into the obvious inequality 

'i,v/z erp i-V, nolh,/(o,h,)l < 1 

3O. Theorem 1 yields an unbounded stabilizing control I, and hence the question arises 
of whether restricted controls exist which solve stabilization problem. Theorem 2 provides 
an affirmative answer. The specific value of r(,, however, remains unknown. 

Let us give, without a proof, one of the possible estimates for the choice of this value. 
We write 

h, = V, (111 + h,), rO = mar (7, y? QY 
rl = min (b-l, ~"*(ZrOx)-lll} 

D= h#+ iOrplh;" 2+'+ Q&'*k-~ 

I hiiz + i&or'/* h#* + i&orlh;h 
b= tr(XU,DU:+DU161U,+DU,DU,) 

Then the quantity r0 satisfying the conditions of Theorem 1 is chosen from the relations 

7o<rl, Q+'/,bJ%<* (2.10) 

3. Substantiating the results. Proof of Theorem 1. 
We introduce the complex variable w = a -f- is and rewrite (1.1) and (1.2) in the form 

. . 
w - ih (t) W' - rw = 0 (3.1) 
h' = M (t)/A, r = mgliA, h (t) = CqiIA (3.2) 

Let us choose for r+(i) the initial condition m'(O) = Ah,IC. Then h(0) =h, and the 
solution of (3.2), with M(t) from (2.1), represents the following periodic function: 
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h (t) = 
hp kT,(t<kT+t, 

-hhZ, icT +tl=Q<(k+l)T; k=O+ 1,2,... 

Let us make the change of variable in (3.1) 

(3.3) 

r=uexp(gh(T)dT) (3.4) 
0 

This yields the equation 

u(" + (W/2 + h"/4 - r) u = 0 (3.5) 

By virtue of (3.4) the stability of (3.1) is equivalent to the stability of (3.5). We 

shall seek the matrix of the monodromy of periodic equation (3.5). Let':the fundamental matrix 
of (3.5) for A = canst be U (h, t) = 11 ufj (h, t)II (i, j = I,2). The elements of the matrix U(h, t) 
are easily computed, since when h = conat, (3.5) becomes a quadratic equation with constant 
coefficients. 
t=T, 

The periodic function h(t) of (3.3) undergoes jumps at the points t= t, and 
equal in modulus to 81 f &. According to (3.1) the functions w and w'are continuous 

and jumps appear only in w". Taking this into account and differentiating (3.41, we obtain 

u PI - 0) = U (tl + O), u(T - 0) = u (T + 0) 
24' (tl + 0) = U‘ (2, - 0) + ih,U (fl), u' (T + 0) = 

Ii (T - 0) + ih,,u (T) 

using the latter relations we construct the matrix of the monodromy of (3.5) 

The trace of the linear system (3.5) (rewritten in Cauchy form) is equal to zero, there- 
fore according to Liouville's theorem /2/ we have det U,(T) = 1. Consequently the eigenvalues 
of the matrix U,(T) are given by the equation Aa- ah + 1 = 0 where a = tr UO (2'). The con- 

ditions of stability &#J+, \&,,I = 1 are in this case equivalent to the relations 1 a/ (2, 
lma = 0. Multiplying the matrices in (3.6) we obtain 

Let us consider case lo. when the inequality in (2.5) holds, we have Ima = 0, Rea = 2Q. 
The computations are csrriedoutin the same manner when inequality (2.6) holds. 
Let us consider case 2 . If the momentM(I)does not ensure the angular velocity of 

the rotor is w. = 2 I/FAIL', then we have the inequality 1 q’(t)1 <2vA/C , for all t, which 
is equivalent to the inequality h2 (t)/4 - r<O. Let us apply Krein's theorem /3/ to (3.5). 
According to this theorem the periodic equation 2" +p(l)s = 0 is unstable when Re p(t)<O, 
t E IO, -) I For (3.51 P(L) = I/&' + h*/4 - r, consequently Rep(t)= hP/4 -r< 0 which completes 
the proof of Theorem 1. 

Proof of Theorem 2, In this case the solution of (3.21 with initial conditions cp' (0) = 
Ah,IC will have the form 

A 

4 

-h 

Fig.2 

h (kT* 

h @I = 
hl - MoA-’ (r -t,), 
__h a* 

t147<tt+ To 

tl+~o<T<ttl+z*+tI 
(3.8) 

r=t-kkT*, k=[t/T*] 

When relations (2.9) hold, the function h(t) given by (3.8) 
is continuous. Fig.2 shows its shape. AS was shown in the 

proof of Theorem 1, the stability of (3.1) is equivalent to the 
stability of (3.5). Let us construct the matrix of the mono- 
dromy of system (3.5). The fundamental matrices of (3.5) On the 
segments (0, a) and (b,c) are known. We shall denote them, as 
before, by U (h,, t) anti U {hz, t), and tile fundamental matrix of 
(3.5) on the segment (a, b) by V, (t) = 11 vi1 (t)I) (i, j = 1, 2) where 

uil Ct) are some complex functions of time. Relations (3.8) yield 

5 1, + z) = h [(k + 1) T* .- ~1, 0 G -r < 70 



269 

dh (0 dh (0 
d7 L=kT'+ir+S = 

-- 
dr t=(k+ljT'-% 

and the following conclusions can be drawn from the latter relations. Equation (3.5) on the 

segment (a,b) is identical with (3.5) on the segment (c,d) , provided that the latter is 
solved in the "understandable" motion from d to c, and the coefficient of u in (3.5) is 

replaced by a complex conjugate coefficient. Using this we find, that the fundamental matrix 

of system (3.5) on the segment (c,d) has the form 

vp (t) = I &a (t) ha (4 
- 
m(t) hl(4 I 

(3.9) 

(the bar denotes complex conjugation). Thus the matrix of the monodromy of (3.5) is 

lJ (T*) = vz (%I) u (h*, t,) v, (%I) u (h,, t1) (3.10) 

Substituting into (3.10) the explicit values of the elements of the matrix .Y(h,t) and 

using the relation (3.9), we find that Imtr U(T*)= Cl and det U(p)= 1. Therefore the con- 

dition of stability of (3.5) is equivalent to the inequality (t,r U(T*)1<2. 
Let us consider system (3.5) on the segment (a,b) , rewriting it in the Cauchy form 

21’ = 22, xa’= iTfr- ( MO $)x1 

Using the fact that MOT, =A (& i-h,) and the function h(t) in bounded, we obtain the 
following limit relations: 

%l (70) + 1, VlZ (70) + 0, "az (70) + 1, 

uI1 (ro)+ 'l*i (h, + h,) as to -+ 0 

(3.11) 

Since U(h,, tJ and U(h,,&) are independent of 7,, and M,, we obtain from (3.10) and 
(3.11) U(T')+ U,(T) as 7,,+ 0, where the matrix U,(T) was given by (3.6) in the proof 
of Theorem 1. Thus trU(T*)-ctrU,(T) as t-+0. Consequently, if hl,&, t,, h are chosen 
in the same manner as in Theorem 1, then for sufficiently small 7, or sufficiently large M, 
we shall have ItrU(T*)1<2, and the stability of the system will be ensured. 

A more detialed analysis of (3.5) on the segment (a,b) as 70-0, yields (using the method 
of successive approximations) the guaranteed estimates (2.10) (see note 3O), and this completes 
the proof of Theorem 2. 

4. Discussion of the result. We shall compare the method of stabilizing the gyro- 
scope given here, with the stabilization of an inverted pendulum. 

The stabilization of the upper (unstable) position of equilibrium of a pendulum can be 
guaranteed without introducing double feedback either by imposing a vertical acceleration on 
the pendulum support not less than 9 and collinear with the f.orce of gravity, or by imparting 
to the pendulum support a periodic vertical oscillation of appropriate frequency and amplitude, 
leaving the support, on average, at rest /4/. 

The firstmethodcannot be realized in practice, since the displacements of the point of 
support will not in this case be bounded, and will increase as the square of the time. How- 
ever, the method can be combined with the well-known method of gyroscopic stabilization of the 
Lagrange gyrostat /l/. Indeed, let us put in correspondence the displacement of the point of 
support of the pendulum & and the angle of rotation of the gyroscope rotor cp, as well as the 
acceleration of the point of support E" and the angular velocity cp' . Then, in both cases 
the quantities E and p increase with time and the stabilization of these systems occurs for 
fairly large 5" and v', namely when rag, q,'> o0 = 2A T/f/C. Naturally, the problem then 
arises of the existence of such an analogy for the second method of stabilization of the 
pendulum. In other words, can we stabilize a gyroscope by periodically varying the angular 
velocity cp' of the rotor and ensuring the zero mean value for its angular displacement (p? 
We have.shown above that such an analogy exists. The laws of periodic variation of 'p,, ensur- 
ing the stabilization of the gyroscope and zero mean value of p(f) are obtained. We have 
found that in the case of such stabilization, situations are possible in which the angular 
velocity of the rotor over a part of the period is less than the value o,,necessary for 
gyroscopic stabilization. 

REF'ERENCES 

1. BULGAKOV'B.V., Applied Theory of Gytoscopes. Moscow, Izd-vo MGU, 1976. 
2. DEMIDOVICH B-P., Lectures on the Mathematical Theory of Stabilitjr. Moscow, NAUK?., 1967. 
3. DALETSKII YU.L. and KREIN M.G., Stability of the Solutions of Differential Equations in 

Banach Space. Moscow, NAUKA, 1970. 



270 

4. KAPITSA P.L., Dynamic stability of a pendulum with oscillating point of support. Zh. 
eksperim. i teor. fiz. Vo1.21, No.5, 1951. 

Translated by L.X 

PMM lJ.S.S.R.,Vol.48,No.3,pp.270-275,1984 OC21-8928/&34 $10.00+0.00 
Printed in Great Britain 01985 Pergamon Press Ltd. 

HYPERSONIC FLOW PAST A DELTA WING AT LARGE ANGLES OF ATTACK* 

V.N. GOLUBKIN 

The thin shock layer method /l, 2/ is used to investigate the previously 
unknown mode of flow past a delta wing of finite span, at angles of 
attack close to x/2. The flow problem is formulated and analytic expres- 
sions are obtained for the gas-dynamic functions together with the 
equations expressing the relationships between the form of the wing 
surface and the shock wave. A method is given for solving inverse 
problems of flow past actual wings with an attached shock wave. 

If the angle of attack remains finite, when the ratio e of the 
densities on the shock wave tends to zero, the shock wave will remain 
attached to the sharp leading edge of the wing at any finite sweep-back 
angle. The basic results of the study of such a flow were given in /3/. 
On the other hand, when the angles of attack are close to ~12, a flow 
with a detached shock wave results. 

Below it is shown that when eei, a flow past a delta wing exists 
for the range of angles of attack close to n/Z,ar= xl2 --sli'A, with the 
shock wave attached to the wing tip, but attached to or detached from 
the leading edge, depending on the sweep-back angle. This mode falls 
between the two modes mentioned above, and lends itself to analytic 
study. 

1. Let us consider hypersonic gas flow past a delta wing at large angles of attack 

a = nl2 - A *, O<A,((l (1.1) 

Let Ozyz be a Cartesian coordinate system attached to the wing (Fig.1). We assume that 
the thickness of the wing measured from the base plane y =O 
is small. Since the gas is strongly compressed in the 
leading shock wave, it follows that the shock surface will 
also be near the plane y = 0 and the small parameter of 
the thin shock layer method equal to the ratio of the densit- 
ies across the shock will have the form 

e=$+(1+$) (1.2) 

m=(%-l)X=0(1) 

where x is the adiabatic index and !M, is the M number of 
= AE”, A = 0 (1) in (1.1). 

Fig.1 
the oncoming flow. We put A, 

We will obtain the order of magnitude of the perturba- 
tion by considering the flow past the leading edge of a 

plane wing with a finite sweep-back angle h(CoS A =0(l)). We will write the equation of the 
attached shock wave in the form 

y, = Y (2 cos A - z sin A) 

where Y (E, cz, A) is an unknown quantity, to be determined. 
Using the well-known relations for the shock wave we obtain an expansion for the velocity 

component normal to the wing, which should vanish in accordance with the principle of imperme- 
ability. Taking into account the terms of lowest order of smallness we obtain, as e - 0, 

CAY cos A - Ys - e + . . . = 0 (i.3) 

and this yields a solution corresponding to the weak branch of the shock wave 
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